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The unstable and neutral modes of a compressible boundary-layer flow past an 
insulated flat plate are discussed in the limit of infinite Mach number. These modes 
have been documented by Mack and many of the asymptotic results derived here are 
becoming evident in his computations at finite values of the Mach number. Of 
particular interest is the existence of a vorticity mode for which the wavenumber is 
a discontinuous function of Mach number a t  finite Mach number but is continuous 
in the limit M ,  + 00. At large Mach number this is the most unstable mode, and is 
expected to have relevance also in the hypersonic limit when the flow field is no 
longer shock-free. 

1. Introduction 
It is well known that compressible boundary layers are unstable to both inviscid 

and viscous perturbations. An excellent review of the linear inviscid modes of 
instability is that of Mack (1987), and in a later paper, Mack (1989) extends his 
theory and computations to examine the inviscid instability of supersonic shear 
flows. The viscous theory is also documented (see Mack 1987 and his earlier 
comprehensive article, 1984). The present study is entirely on inviscid and two- 
dimensional perturbations, and details the structure of the Mack modes for a Blasius 
boundary layer as the Mach number increases, for a Chapman fluid. One reason for 
the investigation is the renewed interest in hypersonic flows as a result of the current 
development of supersonic and hypersonic transport. 

A recent study of the viscous instability of a laminar boundary layer a t  high Mach 
number may conveniently be mentioned at this stage. It is due to Smith (1989) who 
constructed an asymptotic triple-deck description of lower-branch Tollmien- 
Schlichting waves for three-dimensional disturbances a t  a sufficient angle to the free- 
stream direction to be outside the local wave-Mach-cone. In this study a crucial ratio, 
M,/RA, where M ,  is the Mach number of the free stream and R an appropriately 
defined Reynolds number, was identified. As M ,  increases so that this ratio becomes 
of order unity, the development of the TollmienSchlichting waves takes place on the 
same lengthscale as that of the basic flow, and the assumption of quasi-parallelism 
is no longer justified. This development occurs a t  a lower value of the Mach number 
than that, O(R)), a t  which the assumptions of a hypersonic boundary layer are 
generally considered to  fail (or change, owing to interaction) and may imply that 
existing parallel-flow calculations of the Orr-Sommerfeld type are open to question. 

The inviscid modes studied here are hypersonic in the sense that the present 
investigation is the limit of a theory as the free-stream Mach number tends to 
infinity, but it takes no account of the presence of shocks. The basic flow is that of 
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a shock-free Blasius boundary layer past an insulated flat plate ; this is assumed to 
be a parallel flow. It is doubtful that  the shock-free or the parallel-flow assumptions 
continue to have validity in general for the developing interactive hypersonic 
boundary-layer flow, described by Stewartson (1964) for example, since the attached 
leading-edge shock is then a controlling feature, and the shock layer and the 
boundary layer interact, although it is found that some of the present limiting 
equations continue to hold within the boundary-layer part even so. The linearized 
equation for the pressure is given by Mack (1984, 1987) and is 

dap d - dp 
( l o g W ) - - a y l - F ) p  = 0, 

dY2 dY dY 
with boundary conditions p’(0) = p(00) = 0. Here a is taken to be real and i s  the 
wavenumber in the free-stream direction, @ is defined as 

M = (u-c)M,/@, (1.2) 

where u, T are the velocity and temperature profiles of the basic flow, and the 
eigenvalue c, in general complex, determines the temporal instability of the 
disturbance. 

The various possibilities for the solutions of ( 1 . 1 )  have been comprehensively 
documented by Mack (1984, 1987) and solutions, both neutral and otherwise, 
computed for values of M ,  up to about 10. Lees & Lin (1946) classified the neutral 
modes as subsonic, for which 1- 1/M, < c < 1+ i/M,, sonic, for which c = 
1 l/M,, and supersonic for which c < 1 - l/M,. When &? < 1 the disturbance is 
everywhere relatively subsonic and the theory is similar to that for the incompressible 
case. However, the situation of present interest has &? > 1 over some portion of the 
boundary layer, the most interesting case being when the relative supersonic region 
borders the wall. There is then the opportunity for waves to become trapped between 
the boundary and the sonic line further out in the boundary layer. 

Compressible instability theory permits a multiplicity of solutions that does not 
occur in the incompressible theory. For the insulated flat plate additional neutral 
modes appear at M ,  = 2.2 when a region of relative supersonic flow first occurs a t  the 
wall. Above this Mach number, there are two sequences of neutral modes that are of 
consequence to this study in that they have neighbouring unstable modes. For the 
first of these sequences c = cs,  where c, is the value of u a t  the generalized inflection 
point, defined in (2 .5)  below, and for the second c = 1. The former sequence features 
a critical layer which, as M ,  + 00, moves out to the edge of the boundary layer, while 
for the latter the critical layer is a t  the boundary-layer edge for all M,. Those neutral 
modes which are on a portion of the curve of a against M ,  that is falling, we term, 
in agreement with Mack, ‘acoustic modes’, and those which are on a portion that is 
rising, we term ‘vorticity modes’. They might also be called the minor and the major 
modes respectively, since the vorticity modes have the greatest growth rates at large 
Mach numbers. Mack’s calculations for the inflectional neutral modes show that 
da/dM, < 0 over the major part of every neutral curve so that the modes there are 
acoustic, but that each neutral curve has a range of M ,  for which da/dM, > 0. 
Together these non-overlapping portions of the successive neutral curves form an 
almost continuous rising curve for all M,, and one of the results of the present study 
is that, as M ,  + 00, the segments become the continuous neutral curve of the 
vorticity mode. Our attention here is directed to the structure of both the acoustic 
and vorticity neutral modes for M ,  $- 1, together with examination of the instability 
of the neighbouring modes, among other features. 
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The plan of the paper is as follows. The acoustic modes are discussed briefly in $2, 
a development that parallels, and to a small extent extends, a section of a paper by 
Cowley & Hall (1990) on the stability of hypersonic flow past a wedge including the 
effect of the shock. In $3  we examine the vorticity mode as M, + a, in which limit 
it  may be regarded as a continuous function ofM, (see $ 4  below). For this mode a2 
is large, specifically O(logM,), c x c, and the growth rate aci is O(MG~ (logM,);). 
The corresponding acoustic modes have c x c,, or c x 1, depending on whether they 
are inflectional or non-inflectional, and a = O(MZ2]. The growth rate is also smaller 
than for the vorticity mode being O(M-,G/(logM,)r), although a t  low and moderate 
values of the Mach number it is the so-called second mode, an acoustic mode, that 
is the most unstable. The growth rate of the vorticity mode, is, to leading order, 
entirely determined by the equation that holds in the critical layer together with its 
boundary conditions. Indeed this equation is identical to that obtained by Balsa & 
Goldstein (1990) in their study of the instabilities of supersonic mixing layers in the 
hypersonic limit (see also Jackson & Grosch 1989). At large values of the Mach 
number there is a near-linking of the vorticity mode and the acoustic modes, to 
within exponentially small regions of the (M,, a)-plane. The structure of the linking 
is demonstrated in $4, the results of which are in qualitative agreement with the 
calculations of Mack (1984, 1987), and quantitative agreement with those of Cowley 
& Hall. 

A question that remains open here, if something of a side issue, is the precise fate 
of the vorticity mode as a2/logM, + O .  As shown in $3 the proposed structure breaks 
down in this limit, with the relative phase speed tending to infinity although, to be 
sure, with the growth rate tending to zero. The scales involved become quite 
complicated. It was a t  first suspected that the limit was the neutral sonic mode with 
c = 1 - 1/M,  described by Mack (1987) and shown to be still in existence by his figure 
9, for example, a t  M, = 7 .  However as demonstrated here in $5, this mode is no 
longer in existence, except perhaps as an isolated neutral mode, for values of M ,  
beyond 75. This cut-off number, for the flat-plate case, is of course an extremely large 
one, but in general the cut-off value is a profile-dependent quantity and so could take 
smaller, more realistic, values for certain boundary-layer flows. That could be 
significant since the cut-off Mach number heralds the onset of new, outward- 
travelling disturbances persisting a t  the edge of the boundary layer. 

In this study we have used for the basic flow a Blasius boundary-layer flow past an 
insulated flat plate for a model fluid. This means that the Prandtl number has been 
taken as unity, instead of the usual 0.72 for air, and the viscosity has been assumed 
to be proportional to the absolute temperature so that the Chapman constant is one. 
The effect of these assumptions on the asymptotics a t  infinite Mach number is likely 
to be small, but an important consequence is that quantitative comparisons with the 
numerical results of Mack a t  finite Mach number may be unproductive. Mack was 
extremely careful to model the precise dependence of the various quantities on the 
temperature, and a t  high temperatures replaced the Chapman viscosity-temperature 
law with the Sutherland law, and used Keyes formula for the conductivity; for a 
discussion of this see Mack (1965). His aim was to provide a comparison with 
experiment and possibly a prediction for transition to turbulence by use of linear 
stability theory, while ours is to gain some insight into the possible modes of 
instability of a hypersonic boundary layer. For this reason in the following the 
simplest base flow with the required properties has been employed. Indeed the 
inflectional neutral modes of Mack have been recomputed by Cowley & Hall (1990) 
for unit Prandtl number and the Chapman viscosity temperature law and in $92 and 
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4 we are able to make some quantitative comparisons with their results. The present 
analysis applies also to wakes, and the vorticity mode, for instance, compares well 
with wake-stability computations kindly supplied by Dr D. T. Papageorgiou as 
shown in Brown et al. (1990). 

2. The acoustic modes when M ,  % 1 
When written in terms of the Howarth-Dorodnitsyn variable 

the compressible Rayleigh equation, (1.1) above, for the pressure becomes 

a2T(T-(u-c)2Wm)p = 0, 
d2p 2du/dz* dp ~- -- 
dz*' U-c dz* 

(2.1) 

with boundary conditions 

For a unit Prandtl number, and a viscosity that is proportional to the absolute 
temperature, the temperature T is given by 

p'(0)  = p ( m )  = 0. (2.3) 

T = 1 +icy- 1)M2,(1 -u2) (2.4) 

in the case of a thermally insulating wall. Here y is the ratio of the specific heats, and 
when its numerical value is required this will be taken as 1.4. 

As discussed by Mack (1984, 1987), and mentioned here in $1, regular neutral 
modes of a Blasius boundary layer over an insulated wall occur for three values of 
c.  The first is when c = 1 -M;l and for this a = 0. The second and third occur for two 
sequences of values of a,  with c = 1 and c = c, respectively. Those for which c = 1 are 
the non-inflectional neutral modes, while those for which c = c, have a generalized 
inflection point at z* = z,* where 

d2u d T  du T-- = 2-- 
dz*2 dz* dz* 

with c, = u(z,*) .  For the Blasius boundary layer for which, 

= i - p - l  e-22/4{1 + 22-2+ o ( z - ~ ) ) ,  
where y = 0.468 and z = x * -  1.721, i t  is easily shown that 

and that the generalized inflection point, or critical layer, is a t  

kz = r+ O ( P )  

where 

Thus, to leading order 
r z (1ogM:)i. (2.10) 

The sequences of eigenvalues 01 associated with c = 1 and c = c, we denote by aln 
and a,, respectively. Since, when M ,  --f co, c,, as given in (2.7), tends to unity, it  is 
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not surprising, as is evident in figures 2 and 4 of Mack (1987), that the limiting forms 
of these modes are the same. It is evident, too, that the neighbouring unstable modes 
have small growth rate: see Mack's figure 9 for example where in the diagram for 
Im c there are little humps of instability above the a-axis, the neutral mode at the left- 
hand end of the hump having c = 1, and that to the right-hand side having c = c,. 

These acoustic modes, and neighbouring unstable modes, are discussed in the 
simultaneous work by Cowley & Hall (1990), so where the work overlaps a very 
brief account is given, although sufficient of the results are presented, with 
acknowledgement where appropriate, to lead into the topic of $4. This latter is a 
discussion of the linking between the present acoustic modes and the vorticity mode 
of the following section. 

When M ,  B 1, the leading approximations to aln, a,, are the same, a, say, and are 
obtained by replacing c by unity and T by a(y-l)W,(1-u2) in (2.2) so that 

2(1-u) 
(2.11) 

dz*2 u - 1 dz* dz* Y--l)( l+u)  

subject to p;(O) = po(oo) = 0. Here Po = a(?- l)a,W,. The first ten values of Po are 
obtained by Cowley & Hall. We have obtained the first value of Po independently, 
and the large a, behaviour as described later. To find the correction to Po when c is 
real, or the correction to c when ccIM2, is given and the mode is not neutral, we must 
also consider the critical layer and the potential region outside it, as did Cowley & 
Hall. We write 

(2.12) 

and note that if the mode is neutral then Zl = 0 for a = a,,, i.e. /3 = P1, and El = 
l / ( y - l )  for a = asn, i.e. p = p,,. We shall show that, in agreement with Mack, 
pl, < Psn,  a t  least for the lowest mode, and shall find the leading approximation to 
Imc for PI, < p < p,,. 

The result we have obtained from the match of the solutions in the regions where 
z = 0 ( 1 ) ,  the critical layer and the region beyond it is equivalent to that of Cowley 
& Hall. It is that El is determined by the equation 

a(? - 1 ) W, a = /3 = Po + p1 /M", c1 = 1 - El/Ww, 

(2.13) 

where A ,  is a constant depending on the normalization chosen for p, ; here we have 
taken 

(2.14) 

for z* >> 1. Also, in the derivation of (2.13) we have assumed that ImEl < 0. 
We see from (2.13) that if El is real and the mode is neutral then either El = 0 or 

c", = l / ( ~ -  1)  and in both cases p1 follows (say pl and 8, respectively). However if p1 
is given, and the work of Mack suggests that p1 < p1 < D,, then El follows. 
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We now examine (2.13) a little more closely for the perturbation to the lowest 
neutral mode to see that the conclusions are consistent with the earlier assumption 
that ImEl < 0, and with the results of Mack at finite M,. 

For the lowest mode we obtain, on solving (2.11) subject to ph(0) = p,(00) = 0, that 
Po = 0.680. Evaluation of the required integrals in (2.13) for the Blasius profile and 
y = 1.4 leads to PI = -1.01 (with El = 0,) and Bs = 2.32 (with El = l / (y-1) ) .  To 
examine the neighbourhoods of B1 = p",,p, more closely, and to calculate ImEl, we 
write, in (2.13) El = &+&and split it into its real and imaginary parts. The result of 
this is the pair of equations 

62+poBfVo/31+60  = 0, ( 2 . 1 5 ~ )  

6(2d +PO) + h, d2( 1 - ( y  - 1) 6 2 )  = 0, 
M2, 

(2.15b) 

where, for the lowest mode, the calculated values of the constants are 

po = -9.265, V, = 5.082, So = 5.115, A, = -10.682. (2.16) 

We see immediately from (2.15b) that 6 = 0(M-,2r1) so that I m c  = O(Mi41-'). The 
procedure now is to obtain B from ( 2 . 1 5 ~ )  and then 6 from (2.15b), and for 
consistency the resulting 6 must be negative. We see from (2.15b) that 2d,+po 
cannot vanish (it is non-zero when B = 0 or 6 = l / (y -1 ) )  and therefore remains 
negative. It follows that 0 < B < l / (y -  1) and, from (2.15a), since ap,/aB > 0, that 
for instability p1 lies between Pl and ps. This is in agreement with the growth rates 
in figures 7, 8 and 9 for example of Mack (1987) which show small humps of 
instability terminated by the non-inflectional neutral modes on the left-hand side 
and by the inflectional ones on the right-hand side. 

When 01, % 1 the leading approximation to  the neutral modes may be obtained by 
an application of the WKB method. There are three regions to consider because there 
is a turning point. We start with the region nearest the wall for which we write (2.2) 
in the form 

where 

(2.17) 

(2.18) 

but' has a zero a t  

1 ) [ - ( y - l ) ( i + u )  
2(1 -u) 

G(z*) = $(r- 1)2(1 -u2 1 

In  the neighbourhood of the wall, for z* < z,* say, G(x*) < 0, 
z* = z,* and is thereafter positive. Here c, has been replaced by its leading-order term 
unity for W, + 1 and T(T-(U-C)~W,) by its form for W, $ 1 and z* = O(1). The 
final result (equation (2.25)) will be the leading term for a. as a function of M ,  for 
both the inflectional and non-inflectional neutral modes. 

The solution of (2.17) for z* < z,* that satisfies p'(0) = 0 is 

Pk*) = E,  (2.19) 

where E,  is a constant and CCM: % 1. In the region containing the turning point the 
equation to be solved is, as is standard, the Airy equation 

(2.20) 
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n (nn:+in:)/J- ( 

0 1.757 
1 8.785 
2 15.81 
3 22.84 
4 29.87 
5 36.90 
6 43.93 
7 50.95 
8 57.98 
9 65.01 

:owley & Hall 

3.401 
9.786 

16.50 
23.36 
30.28 
37.24 
44.23 
51.23 
58.24 
65.26 

TABLE 1 .  Comparison of the eigenvalues aM2, of the acoustic modes as given by (2.25) with the 
numerical results of Cowley & Hall (1990) 

where CT = G'(z,*) > 0, with the required exponentially decaying solution 

p = e,  [ x  Ai ( (a2&!: g) i (z* - z;))];, (2.21) 

e ,  being an arbitrary constant. If we denote the argument of the Airy function by t* 
then, for t* 4 - 1 ,  

(2.22) 

If we match the amplitude and phase of (2 .22)  with that of (2.19) as z* --f z,* we find 

(a22M4, CT)&E, = keo, (2.23) 

that 
1 -u(z,*) 

UZ 
and 

(2.24) 

where n is any integer as long as it is large. The arguments of $53 and 4 ,  in which we 
consider the vorticity mode and its near-linking with these acoustic modes, will 
require explicit consideration of the region z* > z,* since the vorticity mode is 
dominant in this region. The principal result of the present section is (2.24) which 
may be written as 

CCM? = (?zn+$T)/J-, (2.25) 
where 

(2.26) 

With y = 1.4, we obtain J- = 0.447, and the values of flm obtained from (2.25) are 
compared, in table 1 ,  with the eigenvalues given by Cowley & Hall (1990) obtained 
by direct integration of equation (2 .11) .  Their results have been divided by 4 2  for 
the comparison as the a of their paper is 4 2  times that considered here. 

The formula (nn: -in)/ J- as given by Mack (1987) appears to be in error. The Airy 
region has not been properly accounted for, and comparison with the results of 
Cowley & Hall is poor, the predicted eigenvalues lying almost half-way between the 
computed ones. We see from table 1 that the prediction of the corrected formula is 
very satisfactory. 
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3. The vorticity mode whenM, % I 

The computations of Mack a t  low and moderate values of M ,  (up to M ,  = 10) for 
the inflectional neutral modes of a Blasius boundary layer over an insulated wall are 
of concern here. These modes, as noted in $2, have c = c,, c, being the value of u a t  
the generalized inflection point. The computations show that, at each value of M,, 
one of the modes has a as an increasing function of M,. The range of M ,  for which 
this occurs transfers to  the successive modes as M ,  increases; this phenomenon is 
clearly visible in figure 2 of Mack’s 1987 paper. This discontinuous ‘mode’ resembles 
the unique low-speed instability wave that occurs a t  small Mach numbers, and is 
termed by Lees (1947) the vorticity mode, those neutral modes for which 01 decreases 
as M ,  increases being the acoustic modes. 

We now examine this mode as M ,  + co and show that in this limit it may be 
regarded as a virtually continuous function of M,.  It emerges that it is far more 
unstable than the acoustic modes, even though it  is near-neutral in that c = 
1 +O(M;2). It is concentrated in the neighbourhood of the critical layer which, when 
M ,  B 1, is situated at z w 2 r  where r is defined by (2.9), and exists, as we shall see 
in (3.17) below, for values of a such that 01 = O ( 0 .  Since &, % 1 and c x 1 the 
region away from the critical layer can be discussed by an adaptation of the WKB 
analysis of 52. Indeed the appropriate equation is again (2.17) and the solution below 
the turning point a t  z,* is (2.19). However the solution (2.21) of the Airy equation 
must be replaced by 

since we are not now seeking a solution with exponential decay beyond the turning 
point. Thus, for t* 4 - I ,  

p = e,n~Ai(t*)+f,dBi(t*) (3.1) 

p x (ei+fi)ilt*l-tcos ($lt*li+tn-#), (3.2) 

(1 -u(z,*)) a - t ( a 2 ~ ~  C+E, = ( e i + f $  (3.3) 

where tan$ = e,/fo. If we match the amplitude and phase of (3.2) with those of (2.19) 
as z* -+ z,* we find that the analogues of (2.23), (2.24) are 

and (3.4) 

respectively. 
When t* % 1 we obtain from (3.1) that  

p x fo t*-f exp ($t*g). (3.5) 
This form for p must be matched to the solution in the region z* > z,* but below the 
critical layer where z* - 1.721 = O ( r )  as in (2.8). In  this region 

where h, is an arbitrary constant. Here we have retained only the exponentially large 
term in the WKB approximation because there is no formal means of evaluating the 
coefficient of the exponentially smaller term (however see $4 below). A match 
between (3.5) and (3.6) yields 

fo/h,  = (1 - u(z,*)) a-a(a2M% a)&. (3.7) 
We now require the behaviour of (3.6) as the critical layer is entered from below. 

The critical layer has 8 = O( 1)  where 

tz = r+qw (3.8) 
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as suggested by (2.8), and in its neighbourhood the two terms of T in (2.4) are of the 
same size with 

T x l+(y-l)e-", (3.9) 

where we have taken 

(3.10) 

(3.11) 

It emerges that, to ensure a match of the 0(1) factors as well as of the exponents, it 
is necessary to retain the contribution of a2ML G(z*) in (2.18) when Bas in (3.8) is of 
order unity. By use of (3.9), (3.10) it follows that 

M4,G(z*) x {1+(y-1)e-T2, (3.12) 
whereupon 

where 

1 
M", li (G(z:))idz: x M", J+ +-{a+ (y - 1) (1 - e-')}, r 

2(1 -u) ]idp*. 

(3.13) 

(3.14) 

Thus, from (3.6), just below the critical layer 

Equation (3.15) will provide a boundary condition for the solution in the critical 
layer which we now consider. 

by 

a = ra (3.16) 

In the region where z = 0(1)  we make the transformation (3.8) in (2.2), define 

and retain the leading terms for M ,  % 1. This, upon use of (3.91, (3.10) leads to  

(3.17) 

This equation is to be solved with p --f 0 as Z+ 00 so that p decays a t  the outer edge 
of the boundary layer, and also p+O as z+- co to match with (3.15). From (3.15) 
we see that the precise behaviour of p in (3.17) as H+- 00 must be a multiple of 

where 

If we now write 

in (3.17) so that i t  

--ds e 

s = (y-1)ePZ. 

,p = S Z L ( S ) ,  c1 = C / ( y -  l ) ,  

becomes 

(3.18) 

(3.19) 

(3.20) 

(C - S) sL" + [ (2a+ 1) C + (1 - 2a) S] L' + a[2( 1 - EC) + E(2  - C) s + Bs'] L = 0 (3.21) 

it is easy to verify that the solution of (3.21) with L(co) = 0 leads to the required 
behaviour (3.18) €or p. Thus the appropriate boundary conditions that will determine 
the eigenvalue C are 

L(0) = L(0O) = 0. 
17 FLM 210 
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I 

FIQURE 1 .  The real and imaginary parts of EC for 0 < ti < a. The broken curves represent the 
asymptotic expansions (3.26) as a- t i  and (3.30) as a+O. 

Equation (3.17) is, on making the identifications p = s-i(cl-s)9([), = e-", 
c1 = r, exactly equation (31 a)  of Balsa & Goldstein (1990) describing the critical-layer 
region in either of the external streams of a supersonic mixing layer in the hypersonic 
limit. There, as here, the eigenvalue is, at leading order, determined entirely by the 
solution in the critical layer. Balsa & Goldstein also obtain numerical solutions of the 
equation and we therefore proceed with emphasis on the asymptotic forms a t  
limiting values of d. 

In  figure 1 we present the real and imaginary parts of ZC found by numerical 
solution of (3.21). It is seen that solutions exist for 0 d ti < a, that  the mode is neutral 
a t  = a, and that dC --f 0 as d+ 0. It is straightforward to examine the behaviour of 
the eigensolution and of C at the limits of the range of E and we do this below. 

(i) The limit ti+$ 

with (2.7). If we perturb 
When d = t ,  equation (3.21) has a solution L = e-is with C = 1, which is consistent 

E =  a+&,, c = I+c,,  L = e-fs+alL,, (3.22) 

from this value and write 

it is found that L, satisfies 

(1 - s )  sL;' + i ( 3  + s )  L; + 3 6  + s + s2) L,  = ie-is( ( C J E l )  - 1 - 2s - 2). (3.23) 
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Here C1/&l is to be chosen so that L, is finite at the origin, tends to  zero a t  infinity, 
and is continued analytically through the critical layer at s = 1. The result of this 
analysis, for which it was necessary to evaluate 

1; (1 -s2) log ]I -21 exp ( -$?) ds (3.24) 

numerically, giving the value -0.68988, is that for consistency El < 0, and that 

CJ6, = - 2.628 + 2.756i. (3.25) 
Thus &C =:-(a- a) - (0.343 + 0.689i), (3.26) 

which is in good agreement with the results of figure 1. 

(ii) The limit & + O  
This limit is slightly more subtle than that discussed above, since the 

neighbourhood of $z = r that  we are examining spreads as &-to, and the critical 
layer moves towards the wall, although it remains a t  an asymptotically large 
distance from it. It is necessary to examine two regions, namely s = O(cl) and s = 
O ( E f ) ,  the latter of which contains the critical layer. I n  the former the solution of 
(3.21) is, to  leading order, 

L(s)  = 6sK,(&s), (3.27) 

where K ,  is a Bessel function of the second kind. In the latter region, with s = ( Z / & ) $ t  
and L = 1+2c&,(t)+o(~),  

(3.28) 

where c = ( 2 / E ) b o .  (3.29) 

We now choose the constant A ,  to make dL,/dt regular a t  the origin, and match 
(3.28) as t-t 00 with (3.27) as &s+O. The result is that 

(2E)f 
( - log 01)5 

log ( -log 01) 

Re ( C E )  w 3&, 

Im (CE) x - 

(3.30a) 

(3.30 b) 

where d =  1-- ; 1% 2 + Y e  (3.31) 

and ye  = 0.57722 is Euler’s constant. 
The asymptotic forms as cr: +a  and cr: + 0 are shown in figure 1 by dashed lines. We 

note, see also $5 below, that (3.30) implies that  the relative phase speed tends to  
infinity although the growth rate of the disturbance tends to zero as 6+0. 

We turn now to the correction to  the neutral vorticity mode for M ,  9 1 of which 
the relative order is 0(F2) for c and 6. We write 

(3.32) 

and 01 = i+&,/P, where the coefficient of the term 0 ( P 2 M G 2 )  may either be written 
down immediately from (2.5) on use of the asymptotic expansion (2.6) of the Blasius 
function for z 9 1, or determined during the course of the calculation to ensure that 
the solution is regular at the critical layer. Thus in (3.32) the given terms are the 
leading terms in the asymptotic expansion of c, for M ,  9 1. 

17-2 
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FIGURE 2. The vorticity mode [continuous curve V.M.) Superimposed on the numerical calculations 
(continuous curves) and asymptotic expansion (broken curves) of Cowley & Hall (1990). The 
vertical marks on V.M. give the values of M ,  at the near-linkages predicted by (4.9). 

The equation to be solved to determine di ,  is obtained from (2.2) on retaining the 
terms in (2.6) which lead to  a correction O ( P )  when the transformation (3.19) is 
made. A correction to (3.20) is made in the form 

p w &e-"+(1 /P)p l ( s ) ,  (3.33) 

as it is the neutral mode that we are seeking. The result of the calculation, which is 
tedious but straightforward and in which all the integrals may be evaluated 
explicitly, is that 

i.e. d ,  = 0.1692 when y = 1.4. In  terms ofWm the contribution from the definition of 
r in (2.9) to a in (3.16) is formally greater than that from d, in (3.34). From (3.16) 
and (2.9) we obtain 

d ,  = +( 1 + log i( y - 1) - @(i)), (3.34) 

(3.35) 

with a relative error O ( f  210gr). The values of a calculated from (3.35) are 
superimposed on figure 6 of Cowley & Hall (1990) as the continuous curve labelled 
V.M. in figure 2 here. Figure 6 of Cowley & Hall is a recomputation of figure 2 of Mack 
(1987) for unit Prandtl number and Chapman viscosity law, rather than for a Prandtl 
number of 0.72 and the Sutherland law employed by Mack. In this figure of Cowley 
& Hall we have recalibrated the ordinate because, as noted in $2, the 01 of that paper 
is 4 2  times that considered here. The continuous curves shown (other than V.M.) are 
their inflectional neutral modes, and the dashed curves the leading term of the 
asymptotic expansion found by them for the acoustic modes. Further reference to 
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this is made in $4. It, is seen that V.M. is an extremely good approximation to the 
vorticity mode by the time M ,  is 10. If the wall is not thermally insulating but is a t  
a given temperature, T, say, then (2.4) is replaced by 

T = I + i(7 - l)Wm(u - u2) + ( T, - 1) ( 1 - u). (3.36) 

If T, = o(M2,) the vorticity mode is the sQme as described here, but with 7-1 
replaced by icy- 1) (since, from (3.36), for z* 9 1 ,  T w 1 +i(y-  l)M,(l -u) for large 
Mach number). However, a t  finite Mach number, computations analogous to those 
of Mack will differ. 

4. The near-linking of the acoustic modes and the vorticity mode 
In  this section we analyse the near mode-crossing of the inflectional acoustic 

neutral modes and the vorticity mode that is evident in figure 2 of Mack's (1987) 
paper, and in figure 6 of Cowley & Hall (1990); the latter figure is reproduced here 
as figure 2 with the vorticity mode superimposed thereon. Here the analysis is carried 
out for M ,  % 1 and thus the near-linking occurs for values of the appropriate 
scaled wavenumber for the acoustic modes, that are large, so that a x ir, the neutral 
wavenumber of the vorticity mode. The near-linking is, as suggested by Cowley & 
Hall, of an exponential nature. 

To discuss the near-linking we extend the WKB analysis of $52 and 3. Away from 
the critical layer and in the region below the turning point z,* the solution is again 
(2.19). I n  the neighbourhood of z:, p is given by (3.1), and (3.2)-(3.4) also hold. 
However we replace (3.5) by 

p w t*-+(ie, exp ( -it*;) + f o  exp (it*"), (4.1) 
retaining (with reservations) the exponentially small term. Our justification for this, 
which is formally correct only iffo = 0, is that if fo is small, which we assume below, 
the effect of the indeterminate exponentially small terms in the asymptotic 
expansion of Bi (t*) will be negligible. We also retain in (3.6) the corresponding term 
with the negative exponent with an arbitrary multiplier go in addition to the term in 
h,. Then, as well as (3.7), we have, from the match with (4.1), that 

e0/290 = f o b , .  (4.2) 
The behaviour as the critical layer is entered from below is now required. This is 

(3.15) augmented by a corresponding term in go, namely 

+ h, exp [&, J+ + ( a / q  (z+ (y-  1) (1 - ePZ))]}. (4.3) 
In  the critical layer we make the transformation (3.8) so that the appropriate 

equation is again (3.17) with c1 = l / (y-1)  since it is a neutral mode that we are 

(4.4) 
seeking. In (3.17) we set 

where s is defined by (3.19), to give a perturbation to the neutral vorticity mode of 
$3. If we now write p = S'L and L = e-fs+L",, then the equation satisfied by L", is 
(3.23) but with Cl = 0. On ensuring that the solution is regular a t  s = 0, so that p 
decays above the critical layer, it is easy to show that, for s 9 1,  

- 1 1  
01 = a+a, p = s~e-P++p",, 

(4.5) 
1 3 1  p x &e-b-&(2a)rs~e~s, 
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FIGURE 3. Sketch of the near-linking of the acoustic and vorticity modes. The continuous curves 
represent the finite Mach number configuration and the broken curves the asymptotic limit as 
M,+CO. 

which implies a matching condition for the solution below the critical layer of 

p z (y  - l)f exp [ -a(? - 1) e-c- @] - cid (2n) (y  - 1):exp [+(y - 1) ePr - 351. (4.6) 

We now compare (4.3) and (4.6), and see that if we set E X ;  in (4.3) as in the 
transformation (4.4), the two terms cross match if 

90 = - d i ( 2 n ) ~ ( y - - ) t e x p [ 2 c c ~ ~ ~ + + ~ ( y - l ) ] .  (4.7) 
h0 

We now have gO/h, and hence eo/fo from (4.2). This will give us $ in (3.4) which is 
the crucial result of this section. We assume, as mentioned above, that $ M in - f o / e o ,  
i.e. that f o / e o  4 1, since we are seeking a perturbation not only to  the vorticity mode 
but also to the acoustic modes for whichf, is zero. The final result is, from (4.7) on 
use of (4.2), that (3.4) becomes 

where J- is defined in (2.26) and J+ in (3.14). 
We are now able to see from (4.8) that, for M L  % 1, the vorticity and acoustic 

neutral modes are separated by an exponentially small amount. The vanishing of the 
two factors on the left-hand side leads respectively to the vorticity mode and the 
acoustic modes. The hyperbolic form of (4.8) for a as a function of M ,  can be seen 
in figure 2 of Mack (1987) even at values of M ,  less than 10. A sketch is given here 
in figure 3 for a pair of such intersections. The continuous lines represent the 
situation that occurs a t  finite M ,  when the separation of the modes is finite. The 
dashed lines represent a as given by (4.8) with the exponentially small right-hand 
side ignored, and lead to the continuous infinite M ,  limits. 

A leading-order approximation for the positions of the near-linking of the 
successive modes may be made from (4.8). The prediction is 

if = (nn +$)/M2, J-, (4.9) 

and the values of M ,  obtained from this with r = (logM2,)i and n = 1-5 are shown 
as vertical marks on the curve V.M. in figure 2. For n = 6 and 7 the marks are 
graphically indistinguishable from the computed near-linkages. 
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5. The disappearance of the sonic mode at finite M ,  
The results (3.25) of $3  show that the correction c1 to c in (3.11) is O ( d )  as Z-tO. 

It is therefore necessary to consider a further region in which a = o(T) in order to 
determine the fate of the vorticity mode for very small values of a. It was at first 
expected that in the limit the vorticity mode would finally tend to the neutral sonic 
mode as described by Mack (1987). This has c = 1 - 1/M, and a = 0. For non-zero a 
it is unstable and as evident in figures 7 ,  8 and 9 of Mack's paper where it is labelled 
S,, it merges, as M ,  increases, with an adjacent mode to become the most unstable 
mode at the Mach numbers he considers. However, as we show below, this sonic mode 
cannot be the limit of the vorticity mode as a + 0, because, by the time M ,  is 75, the 
sonic mode no longer exists as a neighbouring mode to unstable modes. 

To demonstrate this it is easier to consider the equation for V( = w/(u-c)) ,  as given 
by Mack (1984) in his equation (9.8), as the matched asymptotic expansions yield the 
required results at one stage previous to that if equation (2 .2)  for p is used. In  terms 
of z* the equation for V is 

where @ is defined in (1.2), and V(0)  = 0 with V bounded as z* -+ co. 

and set 
For the sonic mode a = 0 and c = 1 - 1/M,  so we now perturb away from a = 0 

1 
c = l-----+a2c"+o(a2), 

MW 

where c" will be complex and is to be found. The value of M ,  is to be considered as 
finite and fixed. 

If V and @/(l -p) are written in the form 

V =  ~ + a 2 ~ + + ( a 2 ) ,  

p / ( 1  -p) = No(z*) +a2N,(z*)+o(a2), 

then it is easy to show that 

and 

(5.5b) 

where go is a constant which is to be determined by the match through the critical 
layer at z* = z:, where u(z,*) = 1 - l/Mm, and with an exponentially decaying outer 
solution. Also 

3% = [*TV,zdz:-A N for z* < z z ,  

Tdz* No 

TV,Fodz:-'+B, N -  for z* > z z ,  
NO 

( 5 . 6 ~ )  

where 
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as obtained from (1.2) by setting c = 1 - l/Mm, so that @(z,*) = 0. Again 8, is an 
arbitrary constant although its value will be immaterial to this study. 

We first require the form of V,, V, for z* 9 1. Since it follows from (5.2), (1.2) and 
(2.6) that No(z*) = O(zexp (Q')) for z* 9 1 we see from (5.5b) that V,+Bo as z* -+ co. 
Also we find from (1.2) that 

5 x -2Wm when z* 9 1, (5.7) % 
and hence, from (5.6b), that  

Thus the leading terms of V are 
v, x 2Wm z*. 

v x B;, + 2 m m  a%*, (5.9) 

when z* 9 1,  and we now evaluate B, by matching with an outer layer in which the 
two terms of (5.9) are of the same size. In  this outer region (5.1) reduces to 

2EM, a 4 V  = 0, 
d2V 
dz*2 
-- ( 5 . 1 0 ~ )  

so that v = exp [ - ( 2 ~ ~ , ) + a ~ z * ] ,  (5.10b) 

where the square root with a positive real part is to be chosen. Thus the match 
between (5.9) and (5.10) implies that 

B0 =-(2a!f m i  )i (5.11) 
so that ReB, < 0. 

Now a t  z* = z,* the integrand in (5.5) has a double pole and if we write 

(5.12) 

we have, from (5.5u), that, for x* < z,*, 

2 Q'" z,* + z* + - 2 l o g  __ ( 5 . 1 3 ~ )  
2 z* -- 

QE z,*(z* -2:) 3 &I2  2: - z* 
and from (5.5b) that, for z* > z z ,  

2 Q'" z* + z,* + - 2 l o g  ~ +Bo. (5.13b) 
2 - 

(z* - 2;) Q; 3 Q ; 2  z* - 2; 

We now determinej0 by requiring that (5.13b) is the analytic continuation of (5.13a) 
on the assumption 

since u'(z,*) > 0. It 

that Imc > 0. This implies that  

log (z* - z,*) = log (z,* -z*) -in, 

now follows from (5.13) that  

(5.14) 

(5.15) 
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where 

(5.16) 

Two requirements must be fulfilled, namely Imc" > 0 and Re& < 0. Since 2EM, = 
Bi, together these imply that it is necessary that 

ReBo < 0, ImB, < 0. (5.17a, b)  

If, for anyM,, either of (5.17) is not satisfied we may infer that the sonic mode that 
exists with a = 0 and c = 1 - 1/M, has no neighbouring unstable modes. 

To examine whether (5.17) is satisfied for varying y and M ,  it  is necessary to 
evaluate I, numerically. However if M,-1 4 1 or M ,  >> 1 this may be done 
analytically. We first evaluate QE, Qr  to give 

When 0 < M ,  - 1 4 1, z,* is very near the wall with 

(5.1 8 a)  

(5.18 b)  

(5.19) 

and the leading terms of (5.15) are not derived from I,. We find, on using (5.18), that 

(5.20) 

gives the leading terms for M ,  - 1 small, and (5.17) is satisfied. 

With z ,  = z,* - 1.721 we obtain 
When M, >> 1, zx is right a t  the edge of the boundary layer and (2.6) may be used. 

and that 
-2 9-3 

To evaluate I ,  in this limit we replace (5.16) by 

dl* 
dz* 
2 = F(z*) ,  I,*(O) = 0, 

(5.21) 

(5.22) 

(5.23) 

where F(z*)  is the integrand of (5.16). Then I, = I,*( a). The function F(z*)  has to be 
considered in three regions, firstly where z* = 0(1) ,  secondly where z* x z:, and 
finally when z* % 1 and exponentially small terms can be ignored. 

When z* = O ( l ) ,  M ,  % 1, 

F(z* )  x g(r- l)W,(l +u) [&- 1) (1 +u) - (1 -u)] = Fo(z*), (5.24) 

say, so that in this region 

I,* x [*F0(z:) dz:. (5.25) 
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When z* w z,* as given by (5.21) we write 
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z = zc+z /z , ,  

and use (2.6) to replace T ,  No by their form in this neighbourhood. Here 

so that 

(5.26) 

(5.27) 

(5.28) 

where B, is a constant to be determined by matching. When z* 9 1, we obtain, on use 
of (5.21), 

so that 

Thus 

(5.29) 

(5.30) 

(5.31) 

and we now determine A,,  B, by matching (5.25), (5.28), (5.30). We first match 
2-t co in (5.28) with z+z, in (5.30), and from the constant terms obtain 

Ac-2logz, = B , - l .  (5.32) 

Finally we match 2 +. - co in (5.28) with z* +. z,* in (5.25) to give 

B, = Lzz 
2 ,  

so that (5.32) and (5.31) now lead to 

(5.33) 

1, = (7- z,, (5.34) 

where, as in (5.21), z ,  w 2(logM,)i. 

They are 
We may now write down the leading-order terms of Re8,, ImB, as given by (5.15). 

8, x (7-l)", 2,-- , ( (5.35) 

where the relative error in both terms is O(z;l). We see immediately that Re8, has 
the wrong sign, and indeed numerical evaluation of 8, for y = 1.4 shows that the sign 
change occurs for M ,  = &Icrit where M,,,, is approximately equal to 73. 

The analysis of this section has shown that the sonic mode no longer exists as 
M ,  + co , except possibly as an isolated neutral mode at a = 0. Two questions remain : 
first, what is the fate of the near-neutral mode as M, increases through Merit with 
0 < a < 1 ; secondly, what is the limit of the vorticity mode as a +. 0 ? We are unable 
to answer the second a t  present except to note that it is not the neutral sonic mode 
because a t  large M ,  we have shown that this has no neighbouring unstable modes. 
We may, however, make a comment on the first question. From (5.11) we have that 

 EM, = 8tT -8ti + 2iB,,Boi (5.36) 

where B,, was required to be negative so that (5.10b) decays, and B,, must 
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correspondingly be negative so that Im c" > 0 as assumed in the derivation of (5.14). 
One would suspect that the unstable mode that exists for small values of a when 
M ,  <Merit becomes unstable a t  a non-zero value of a when M ,  >Merit although to 
confirm this it would be necessary to compute the term o(a2) in (5.31, (5.4) - a  
formidable task. At M ,  =Merit the limiting solution represents an outgoing wave 
rather than an exponentially decaying mode. For such a wave i t  is necessary that c" 
in (5.10) is real and negative and certainly, when y = 1.4 a t  least as has been verified 
by the numerical work, c" as given by (5.36) is real and negative when M ,  = Merit. It 
thus appears possible that an outgoing neutral wave bifurcates from the sonic mode 
at M ,  =Merit, and for M ,  >Merit unstable waves will not attain a = 0, but will 
become neutral as outgoing waves for non-zero values of a. 

6. Discussion 
The neutral modes of inviscid instability of a flat-plate compressible boundary 

layer are essentially of two types, namely acoustic and vorticity modes. When the 
modes are non-inflectional, i.e. there is no generalized inflection point or critical 
layer, then the wavespeed c is unity and the wavenumber a is, for each mode, a 
continuous monotonic decreasing function of M,, and the perturbations are all 
acoustic modes. However, for the inflectional modes, for which c = c,, a vorticity 
mode may be identified in that each mode contributes a portion of curve with a an 
increasing function of M,. At any M, there is just one such vorticity mode. In the 
limit M ,  -+ co these portions may be regarded as continuous, and this mode and 
neighbouring unstable modes have been analysed here in $3. In  this high-Mach- 
number limit the remaining portions of the inflectional neutral modes become, to 
leading order, indistinguishable from the non-inflectional neutral modes, with a a 
continuous function of M,. Thus, for N ,  % 1, the acoustic modes are cut, in the 
M ,  a-plane, by the vorticity mode, although a t  finite M ,  there is no such intersection 
but merely an interchange of mode identity. The structure of this near-linking is given 
in $4 where it is shown that the separation distance is exponentially small when M ,  
is large. The vorticity mode is important because the neighbouring unstable modes 
have, when M ,  4 1, higher growth rates than do those neighbouring the neutral 
acoustic modes, although at moderate values ofM, i t  is an acoustic mode, the second 
mode, that is the most unstable. The form of this vorticity mode for very small values 
of a is an open question. 
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